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Abstract This paper discusses the effect of selective logging on the energy, 
water, and carbon exchange of tropical forest. We apply multi-objective 
sensitivity analysis and parameter estimation procedures (MOGSA-UA and 
MOSCEM-UA) developed at the University of Arizona, USA, to the Simple 
Biosphere Model 2 (SiB2) at a single site in the Amazon Basin (specifically, 
the Santarém km 83 – LBA site) under two different conditions, i.e. before 
and after selective logging of the natural forest. It is assumed that logging did 
not change soil parameters and the results confirm our working hypothesis that 
the limited changes in the vegetation cover also do not greatly affect the 
preferred model parameter values in these two cases. However, the results do 
show that parameter identification procedures are able to retrieve meaningful 
values for the parameters and do yield an improvement of between 30 and 
70% in the root mean square error when compared to using the default 
parameter values in SiB2. 
Key words  Amazonia; carbon flux; energy–water fluxes; LBA; MOGSA-UA; MOSCEM-UA; 
parameter estimation; selective logging; SiB2 

 
 
INTRODUCTION 
 
The Amazon Basin contains the largest extent of tropical forest on Earth with over  
5 × 106 km2. Deforestation has increased during the last 30 years due to regional 
development (over 500 000 km2 in Brazil). Studies have shown that the effect of 
rainforest clearing may affect the regional and global climate systems (e.g. Nobre et 
al., 1991) and, consequently, the importance of defining appropriate parameter values 
in SVAT models of the Amazon rainforest (e.g. Rocha et al., 1996; Sen et al., 2000). 
The second generation of the Simple Biosphere Model (SiB2; Sellers et al., 1996a) has 
been widely used to describe heat, water, momentum, and carbon fluxes, including 
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those of the Amazonian rainforest (e.g. Sellers et al., 1986, 1996a,b). At the same time, 
new and powerful techniques for parameter estimation using a multi-objective 
approach have been developed (e.g. Duan et al., 1992; Yapo et al., 1998; Gupta et al., 
1999; Bastidas et al., 1999; Vrugt et al., 2003). These techniques are based on the 
simultaneous minimization of different error functions. 
 
 
SITE 
 
The site for which data are available belongs to the Large Scale Biosphere–Atmosphere 
(LBA) Experiment in Amazonia, an international research initiative whose main goals 
are to study the climatology, ecology, biogeochemistry and hydrology of the Amazon 
rainforest. In particular, the LBA experiment seeks to understand the regional 
influence of the Amazon Basin as well as the impacts of land-use change on regional 
and global climate. The study site is located at the FLONA (Floresta Nacional) at 
Tapajós km 83 (Cuiabá–Santarém Highway), approximately 70 km south of Santarém, 
Pará (3.01030°S, 54.58150°W). The vegetation is a tropical humid forest on a broad 
flat plateau. The site had been selectively logged between September and December 
2001. The average temperature is around ~26°C (minimum ~21°C, and maximum 
~31°C) retrieved on Fluxnet webpage (Fluxnet, 2004). Precipitation is over 2000 mm 
year-1 and occurs mainly during the rainy season (late December to July). The wind 
direction is generally from the east and the average wind velocity is ~2-4 m s-1 (Miller 
et al., 2004). The soil is mainly clay with some patches of sandy soil. 
 The measurements were made from a 67-m tall tower. The turbulent fluxes of 
sensible heat, latent heat, CO2 and momentum were measured at 64 m using the eddy 
covariance technique. The meteorological and flux measurements were acquired using 
data loggers. For further information, please refer to Miller et al. (2004), and Rocha et 
al. (2004). 
 
 
SIMPLE BIOSPHERE MODEL 2 (SiB2) 
 
Important characteristics of the SiB2 model include: the use of a realistic 
parameterization of the canopy photosynthesis-conductance; the possibility of using 
satellite data to describe the vegetation phenology (not used in this study); a modified 
hydrological submodel; and a “patchy” snowmelt description (also not used in this 
study). In this new version of SiB, the number of vegetation layers is reduced to one 
and the number of vegetation types to nine. The three soil layer parameterization were 
retained (surface, rooting zone, and a deep soil layer). Modelled latent heat, sensible 
heat and the carbon fluxes are calculated from the atmospheric boundary conditions, 
the prognostic variables of SiB2, the three aerodynamic resistances and the two surface 
resistances. 
 
 
OPTIMIZATION ALGORITHM  
 
Recent studies have demonstrated that even simple manual adjustment of model 
parameters can result in significant improvement in the model performance 
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(Lettenmaier et al., 1996; Nijssen et al., 2003). Although the “manual-expert” 
approach can give very good results, there is a need for fast reliable computer-based 
methods. The MOSCEM (Vrugt et al., 2003) is an automated method that uses a multi-
objective optimization approach based on a Markov Chain Monte Carlo Sampling 
strategy to evolve an initial population randomly selected from within a pre-established 
feasible range towards an approximation of the optimal Pareto region. The goal is to 
identify a reasonable small parameter range which guarantees “optimal” model 
performance in terms of reproducing observations. Because no model is “perfect” and 
the data collected are subject to observational errors, it is impossible to find a unique 
solution. The use of multiple objectives allows the model to constrain to be consistent 
with observations. Such consistency is achieved via the use of different streams of 
information (e.g. turbulent heat and carbon fluxes). 
 
 
DATA 
 
The data were collected every 30 minutes between 29 June 2000 and 16 December 
2003 and sampled both pre-logging and post-logging sub-periods. The pre-logging 
period was from 29 June 2000 to 31 August 2001, the post-logging period the 
remainder. The data contain all the necessary forcing variables for SiB2, i.e. incoming 
solar radiation, net radiation, air temperature, precipitation, wind speed, specific 
humidity; and the following flux observations: net ecosystem exchange, and latent and 
sensible heat flux. 
 SiB2 needs an uninterrupted time series of forcing variables, therefore gap filling 
procedures were applied. If the gap period was less than two hours, adjacent data were 
interpolated. If the gap was greater than two hours, the average value for the same time 
period over the previous and subsequent 20 days was used. No gap filling was applied 
to the flux time series. For quality control, a filtering procedure was used which 
ignored fluxes that were outside plausible minimum and maximum values. For further 
information, please refer to Miller et al. (2004). 
 
 
METHODS 
 
The SiB2 model has 44 parameters. Because of the lack of measurements, the initial 
moisture conditions in the three soil layers were also optimized as in previous studies. 
The parameters are listed in Table 1. The “default” field corresponds to non-optimized, 
a priori parameter values taken from Sellers et al. (1996a,b) and the LDAS website 
(LDAS, 2004). 
 Following Bastidas et al. (1999, 2003) and Demarty et al. (2004), the Multi-
objective Generalized Sensitivity Analysis algorithm (MOGSA; Bastidas et al., 1999) 
was used to identify the sensitive parameters, reduce the dimensionality of the 
optimization problem, and choose the feasible ranges for the optimized parameters. 
Several parameters were also fixed and their values prescribed because site infor-
mation was available. The following procedure was then used for parameter identifi-
cation. First, the sensitive parameters and those not estimated from site information 
were optimized for the pre-logging case using the MOSCEM algorithm (a list of all the 
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parameters of the model, default/fixed values and optimization values is shown in  
Table 1). Then the several parameters related to the soil properties (rootd, sodep, bee, 
phsat, satco, poros) were fixed (to the median value of the range obtained prior to 
logging) for both the pre- and the post-logging case, and a new optimization for 13 
vegetation-related parameters and the initial moisture states was made in both cases. 
Thus, it was assumed that the soil parameters would not change as a result of the 
logging. The results are shown in Table 1 and Fig. 1. The number of sample solutions 
in the Pareto set was reduced from 250 to 25 by selecting the sample points with bias 
values closest to zero. This set of 25 solutions is hereafter referred to as the “preferred” 
solutions set (Table 1). 
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Fig. 1 Parameter spread plot. The black lines correspond to the preferred parameters, 
while the dashed grey line corresponds to the default set of parameters in (a) the pre-
logging case, and (b) post-logging cases, respectively. 

 
 
RESULTS AND DISCUSSION 
 
Table 1 includes the results of the optimization for both cases and selective logging 
seems to have little effect for more than half of the optimized parameters. The 
parameters which are impacted are: g1, z2, zc, z1, vcover, effcon, gradm, atheta, 
btheta, vmax0. Any small changes in parameters used in the turbulent transfer 
submodel (g1, z2, zc, z1, vcover) presumably reflect the impact of selective logging on 
average tree height, vegetation cover, etc. Two (of the eight) parameters in the 
photosynthesis-conductance submodel had small differences, specifically the green 
parameter decreased after the logging as did binter. We do not have an explanation for 
these changes. 
 
 
Table 2 Correlation coefficient, root mean square error, and bias pre- and post-logging and each flux. 
 Pre-logging default Pre-logging optimized Post-logging default Post-logging optimized
  R RMSE BIAS R RMSE BIAS R RMSE BIAS R RMSE BIAS 
λE 0.6 130.4 –20.5 0.9 71.5   24.2 0.53 139.4 –32.8 0.85 81.9   9.9 
H 0.71 120.5   26.1 0.85 35.4 –17.9 0.71 125   36.5 0.78 50.9 –5.4 
CO2 0.5   10.6     2.8 0.8   6.8     0.2 0.4   11.4     4.1 0.73   7.6   1.2 
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Fig. 2 Mean diurnal cycle of surface fluxes calculated using the default and optimized 
parameters compared with observations. The grey shaded area represents the area be-
tween the minimum and the maximum values found in the optimization. Pre-logging 
case latent heat, sensible heat and CO2 fluxes are shown in (a), (c), and (e); while the 
equivalent fluxes in the post-logging case are shown in(b), (d) and (f), respectively.  

 
 
 According to Nepstad et al. (1994) and Sen et al. (2000), the rooting depth (rootd) 
may be ~8 m, or more. The median optimum value in this study is 8.6 m, with the 
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minimum and maximum values in the sampled Pareto set between 4.4 and 13.0 m. The 
soil depth (sodep) parameter is strongly correlated to the rooting depth (it is the sum of 
the three soil layers in the model) and the median optimum value is 12.5 m (minimum 
6.5; maximum 20.0) in this study, a value that seems more reasonable than the default 
assumption of 3.5 m.  
 All three initial soil wetness fraction conditions are greater after the logging than 
before. The values before logging are for late June during the transition from the wet to 
the dry season. The values after logging are for the dry season. These results highlight 
the importance of proper initialization of models: this topic merits further research. 
 The RMSE (root mean squared error) for the pre-logging case is lower than for the 
post-logging case for all three measured fluxes (Table 2). However, the preferred 
parameters seem to have more variation in the pre-logging case. This could be due to 
the different lengths of the study periods: the post-logging data series is approximately 
twice as long as the pre-logging case, thereby providing additional information with 
which to identify parameter values.  
 Figure 2 shows the mean diurnal cycle computed for each flux. The default 
parameter set does not properly simulate energy partition; its use results in under-
estimates of the latent heat flux, especially during the day (in both cases), and over-
estimates the sensible heat flux. The improvement in the simulation of the turbulent 
heat fluxes after the parameter estimation is significant, about 40–45% better for the 
latent heat and 60–70% for the sensible heat flux, both before and after logging.  
 The CO2 flux includes no filters (such as restricting values based on friction 
velocity) and both the default and optimized solutions overestimate observations, 
presumably because not all the flux is adequately measured. However, there is a 
significant improvement, about 35%, when using the optimized parameter set.  
 
 
CONCLUSIONS 
 
The primary results of this study are as follows: 
– As in Nepstad et al. (1994) and Sen et al. (2000), the preferred rooting depth is 

around 8 m for both undisturbed forest and selectively logged forest, inconsistent 
with the default value of 1.5 m taken from Sellers et al. (1996b). 

– There is little difference between the optimized parameter values before and after 
logging, suggesting that selective logging has little significant impact on the 
overall behaviour of the forest. 

– The soil wetness fraction (initial condition) parameters are the only three 
parameters that really cause differences between the two cases. This highlights the 
need to provide proper initialization of land surface models and the influence that 
the soil moisture can have in parameter identification procedures. 

– Optimization significantly improved the model performance in both cases relative 
to when using default parameters, with improvements in the range of 30–70% in 
simulated fluxes.  
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